product
4844784A Compendium of Musical Mathematicshttps://www.gandhi.com.mx/a-compendium-of-musical-mathematics-9789811284380/phttps://gandhi.vtexassets.com/arquivos/ids/4410266/image.jpg?v=63846651795903000014401600MXNWorld Scientific Publishing CompanyInStock/Ebooks/4599140A Compendium of Musical Mathematics14401600https://www.gandhi.com.mx/a-compendium-of-musical-mathematics-9789811284380/phttps://gandhi.vtexassets.com/arquivos/ids/4410266/image.jpg?v=638466517959030000InStockMXN99999DIEbook20249789811284380_W3siaWQiOiJmMWUxNTBjYy00ZDU3LTQxMTgtOGZiNC1hZjQ4ZTg5OWZhZTMiLCJsaXN0UHJpY2UiOjE2MDAsImRpc2NvdW50IjoxNjAsInNlbGxpbmdQcmljZSI6MTQ0MCwiaW5jbHVkZXNUYXgiOnRydWUsInByaWNlVHlwZSI6Ildob2xlc2FsZSIsImN1cnJlbmN5IjoiTVhOIiwiZnJvbSI6IjIwMjUtMDUtMjVUMDk6MDA6MDBaIiwidG8iOiIyMDI1LTA2LTMwVDIzOjU5OjU5WiIsInJlZ2lvbiI6Ik1YIiwiaXNQcmVvcmRlciI6ZmFsc2V9LHsiaWQiOiIwZWZjOTQyMy05NTU4LTRhMWUtYThkYy0wYTllOTQ1NWZjZDQiLCJsaXN0UHJpY2UiOjE1MTAsImRpc2NvdW50IjoxNTEsInNlbGxpbmdQcmljZSI6MTM1OSwiaW5jbHVkZXNUYXgiOnRydWUsInByaWNlVHlwZSI6Ildob2xlc2FsZSIsImN1cnJlbmN5IjoiTVhOIiwiZnJvbSI6IjIwMjUtMDctMDFUMDA6MDA6MDBaIiwicmVnaW9uIjoiTVgiLCJpc1ByZW9yZGVyIjpmYWxzZX1d9789811284380_<p>The purpose of this book is to provide a concise introduction to the mathematical theory of music, opening each chapter to the most recent research. Despite the complexity of some sections, the book can be read by a large audience. Many examples illustrate the concepts introduced. The book is divided into 9 chapters.</p><p>In the first chapter, we tackle the question of the classification of chords and scales. Chapter 2 is a mathematical presentation of David Lewins Generalized Interval Systems. Chapter 3 offers a new theory of diatonicity in equal-tempered universes. Chapter 4 presents the Neo-Riemannian theories based on the work of David Lewin, Richard Cohn and Henry Klumpenhouwer. Chapter 5 is devoted to the application of word combinatorics to music. Chapter 6 studies the rhythmic canons and the tessellation of the line. Chapter 7 is devoted to serial knots. Chapter 8 presents combinatorial designs and their applications to music. The last chapter, chapter 9, is dedicated to the study of tuning systems.</p><p><strong>Contents:</strong></p><ul><li><p>About the Author</p></li><li><p>Introduction</p></li><li><p><em><strong>Musical Set Theories:</strong></em></p><ul><li>Pitch Classes</li><li>Chords and Scales</li><li>Sets of Limited Transposition</li><li>Enumeration of Chords and Scales</li><li>Exercises</li><li>References</li></ul></li><li><p><em><strong>Generalized Interval Systems:</strong></em></p><ul><li>Generalized Interval System</li><li>Interval Function</li><li>Injection Number</li><li>Babbitts Hexachord Theorem</li><li>Interval Sum</li><li>Indicator Function</li><li>Homometric Sets</li><li>Exercises</li><li>References</li></ul></li><li><p><em><strong>Generalized Diatonic Scales:</strong></em></p><ul><li>Sets of Progressive Transposition</li><li>Well-Formed Scales</li><li>Generalized Diatonic Scales</li><li>Generalized Major and Minor Scales</li><li>Exercises</li><li>References</li></ul></li><li><p><em><strong>Voice Leading and Neo-Riemannian Transformations:</strong></em></p><ul><li>Isographic Networks</li><li>Automorphisms of the <em>T/I</em> Group</li><li>Automorphisms of the <em>T/M</em> Group</li><li>PLR Transformations</li><li>JQZ Transformations</li><li>Neo-Riemannian Groups</li><li>Atonal Triads</li><li>Seventh Chords</li><li>Hierarchy of Rameau Groups</li><li>Exercises</li><li>References</li></ul></li><li><p><em><strong>Combinatorics on Musical Words:</strong></em></p><ul><li>Musical Words</li><li>Syntactic Monoids</li><li>Formal Grammars</li><li>Words and Rhythms</li><li>Words and Scales</li><li>Plactic Congruences</li><li>Rational Associahedra</li><li>Exercises</li><li>References</li></ul></li><li><p><em><strong>Rhythmic Canons:</strong></em></p><ul><li>Tilings</li><li>Tijdemans Theorem</li><li>Hajós Groups</li><li>CovenMeyerowitz Conjecture</li><li>Fuglede Conjecture</li><li>Vuza Canons</li><li>Exercises</li><li>References</li></ul></li><li><p><em><strong>Serial Knots:</strong></em></p><ul><li>Chord Diagrams</li><li>Enumeration of Tone Rows</li><li>All-Interval 12-Tone Rows</li><li>Types of Tone Rows</li><li>Combinatoriality</li><li>Similarity Measures</li><li>Serial Groups</li><li>Exercises</li><li>References</li></ul></li><li><p><em><strong>Combinatorial Designs:</strong></em></p><ul><li>Difference Sets</li><li>Block Design</li><li>Resolvable Designs</li><li>Kirkmans Ladies</li><li>Block Designs Drawings</li><li>Tom Johnsons Graphs</li><li>Exercises</li><li>References</li></ul></li><li><p><em><strong>Tuning Systems:</strong></em></p><ul><li>Cents and Beats</li><li>Some Commas</li><li>Historical Temperaments</li><li>Harmonic Metrics</li><li>Continued Fractions</li><li>Best Approximations</li><li>Musical Scale Construction</li><li>Three-Gap Theorem and Cyclic Tunings</li><li>Tuning Theory</li><li>Exercises</li><li>References</li></ul></li><li><p>Solutions to Exercises</p></li><li><p>Index</p></li></ul><p><strong>Readership:</strong> The book can be used as a support for a course at the graduate level. It will also be of interest to mathematics teachers and some musicians, who have a background in music. The book can be read by musicians or music lovers, students of music conservatories who want to understand the mathematical structures that arise in music theory.<br /><strong>Key Features:</strong></p><ul><li>The concise readability of this little book is a definite advantage that will be appreciated by mathematicians</li><li>The novelties proposed in this book (which cannot be found elsewhere): new definition of neo-Riemannian transformations, new classification of dodecaphonic series, new classification of modes via the plactic monoid, etc. will attract many readers</li><li>The opening towards the world of research as one can perceive it through the articles published by the Journal of mathematics and music</li></ul>...9789811284380_World Scientific Publishing Companylibro_electonico_9789811284380_9789811284380Franck JedrzejewskiInglésMéxicohttps://getbook.kobo.com/koboid-prod-public/worldscientific-epub-032e372e-d945-4154-b9e3-deaa032eb388.epub2024-02-28T00:00:00+00:00World Scientific Publishing Company