product
2246334Data Feminismhttps://www.gandhi.com.mx/data-feminism/phttps://gandhi.vtexassets.com/arquivos/ids/1870646/4f3d8a69-0dff-45d7-9ba2-79e4a3406f48.jpg?v=638342098608430000413573MXNMIT PressInStock/Ebooks/<p>Cutting edge strategies for thinking about data science and data ethics through an intersectional feminist lens.</p><p>Without ever finger-wagging, <em>Data Feminism</em> reveals inequities and offers a way out of a broken system in which the numbers are allowed to lie.<em>WIRED</em></p><p>Today, data science is a form of power. It has been used to expose injustice, improve health outcomes, and topple governments. But it has also been used to discriminate, police, and surveil. This potential for good, on the one hand, and harm, on the other, makes it essential to ask: Data science by whom? Data science for whom? Data science with whose interests in mind? The narratives around big data and data science are overwhelmingly white, male, and techno-heroic.</p><p>In <em>Data Feminism</em>, Catherine DIgnazio and Lauren Klein present a new way of thinking about data science and data ethicsone that is informed by intersectional feminist thought. Illustrating data feminism in action, DIgnazio and Klein show how challenges to the male/female binary can help challenge other hierarchical (and empirically wrong) classification systems. They explain how, for example, an understanding of emotion can expand our ideas about effective data visualization, and how the concept of invisible labor can expose the significant human efforts required by our automated systems. And they show why the data never, ever speak for themselves.</p><p><em>Data Feminism</em> offers strategies for data scientists seeking to learn how feminism can help them work toward justice, and for feminists who want to focus their efforts on the growing field of data science. But <em>Data Feminism</em> is about much more than gender. It is about power, about who has it and who doesnt, and about how those differentials of power can be challenged and changed.</p>...2072892Data Feminism413573https://www.gandhi.com.mx/data-feminism/phttps://gandhi.vtexassets.com/arquivos/ids/1870646/4f3d8a69-0dff-45d7-9ba2-79e4a3406f48.jpg?v=638342098608430000InStockMXN99999DIEbook20209780262358538_W3siaWQiOiI5ZjRlOTRjMC01YTQ2LTQ0ZDItYTg1Mi03NDFlNzM4OTY5MjAiLCJsaXN0UHJpY2UiOjU1OSwiZGlzY291bnQiOjE1Nywic2VsbGluZ1ByaWNlIjo0MDIsImluY2x1ZGVzVGF4Ijp0cnVlLCJwcmljZVR5cGUiOiJXaG9sZXNhbGUiLCJjdXJyZW5jeSI6Ik1YTiIsImZyb20iOiIyMDI0LTEyLTAxVDAwOjAwOjAwWiIsInJlZ2lvbiI6Ik1YIiwiaXNQcmVvcmRlciI6ZmFsc2V9XQ==9780262358538_<p><strong>A new way of thinking about data science and data ethics that is informed by the ideas of intersectional feminism.</strong></p><p>Today, data science is a form of power. It has been used to expose injustice, improve health outcomes, and topple governments. But it has also been used to discriminate, police, and surveil. This potential for good, on the one hand, and harm, on the other, makes it essential to ask: Data science by whom? Data science for whom? Data science with whose interests in mind? The narratives around big data and data science are overwhelmingly white, male, and techno-heroic. In <em>Data Feminism</em>, Catherine DIgnazio and Lauren Klein present a new way of thinking about data science and data ethicsone that is informed by intersectional feminist thought.</p><p>Illustrating data feminism in action, DIgnazio and Klein show how challenges to the male/female binary can help challenge other hierarchical (and empirically wrong) classification systems. They explain how, for example, an understanding of emotion can expand our ideas about effective data visualization, and how the concept of invisible labor can expose the significant human efforts required by our automated systems. And they show why the data never, ever speak for themselves.</p><p><em>Data Feminism</em> offers strategies for data scientists seeking to learn how feminism can help them work toward justice, and for feminists who want to focus their efforts on the growing field of data science. But <em>Data Feminism</em> is about much more than gender. It is about power, about who has it and who doesnt, and about how those differentials of power can be challenged and changed.</p>(*_*)9780262358538_<p><strong>A new way of thinking about data science and data ethics that is informed by the ideas of intersectional feminism.</strong></p><p>Today, data science is a form of power. It has been used to expose injustice, improve health outcomes, and topple governments. But it has also been used to discriminate, police, and surveil. This potential for good, on the one hand, and harm, on the other, makes it essential to ask: Data science by whom? Data science for whom? Data science with whose interests in mind? The narratives around big data and data science are overwhelmingly white, male, and techno-heroic. In <em>Data Feminism</em>, Catherine DIgnazio and Lauren Klein present a new way of thinking about data science and data ethicsone that is informed by intersectional feminist thought.</p><p>Illustrating data feminism in action, DIgnazio and Klein show how challenges to the male/female binary can help challenge other hierarchical (and empirically wrong) classification systems. They explain how, for example, an understanding of emotion can expand our ideas about effective data visualization, and how the concept of invisible labor can expose the significant human efforts required by our automated systems. And they show why the data never, ever speak for themselves.</p><p><em>Data Feminism</em> offers strategies for data scientists seeking to learn how feminism can help them work toward justice, and for feminists who want to focus their efforts on the growing field of data science. But <em>Data Feminism</em> is about much more than gender. It is about power, about who has it and who doesnt, and about how those differentials of power can be challenged and changed.</p>...(*_*)9780262358538_<p>Cutting edge strategies for thinking about data science and data ethics through an intersectional feminist lens.</p><p>Without ever finger-wagging, <em>Data Feminism</em> reveals inequities and offers a way out of a broken system in which the numbers are allowed to lie.<em>WIRED</em></p><p>Today, data science is a form of power. It has been used to expose injustice, improve health outcomes, and topple governments. But it has also been used to discriminate, police, and surveil. This potential for good, on the one hand, and harm, on the other, makes it essential to ask: Data science by whom? Data science for whom? Data science with whose interests in mind? The narratives around big data and data science are overwhelmingly white, male, and techno-heroic.</p><p>In <em>Data Feminism</em>, Catherine DIgnazio and Lauren Klein present a new way of thinking about data science and data ethicsone that is informed by intersectional feminist thought. Illustrating data feminism in action, DIgnazio and Klein show how challenges to the male/female binary can help challenge other hierarchical (and empirically wrong) classification systems. They explain how, for example, an understanding of emotion can expand our ideas about effective data visualization, and how the concept of invisible labor can expose the significant human efforts required by our automated systems. And they show why the data never, ever speak for themselves.</p><p><em>Data Feminism</em> offers strategies for data scientists seeking to learn how feminism can help them work toward justice, and for feminists who want to focus their efforts on the growing field of data science. But <em>Data Feminism</em> is about much more than gender. It is about power, about who has it and who doesnt, and about how those differentials of power can be challenged and changed.</p>...9780262358538_MIT Presslibro_electonico_dbe1df52-d7da-3cc2-8f05-62bffe8d4e31_9780262358538;9780262358538_9780262358538Lauren F.InglésMéxicohttps://getbook.kobo.com/koboid-prod-public/randomhousewh-epub-e8e26bcd-78f8-4cfc-90ab-d02b749c93e1.epub2020-03-31T00:00:00+00:00MIT Press