product
2208440Dynamic Time Series Models using R-INLAhttps://www.gandhi.com.mx/dynamic-time-series-models-using-r-inla/phttps://gandhi.vtexassets.com/arquivos/ids/2014292/2fd831c5-6b35-455d-9c3f-8745c6b2d537.jpg?v=63834521426800000013551355MXNCRC PressInStock/Ebooks/<p><em><strong>Dynamic Time Series Models using R-INLA: An Applied Perspective</strong></em> is the outcome of a joint effort to systematically describe the use of R-INLA for analysing time series and showcasing the code and description by several examples. This book introduces the underpinnings of R-INLA and the tools needed for modelling different types of time series using an approximate Bayesian framework.</p><p>The book is an ideal reference for statisticians and scientists who work with time series data. It provides an excellent resource for teaching a course on Bayesian analysis using state space models for time series.</p><p>Key Features:</p><ul><li>Introduction and overview of R-INLA for time series analysis.</li><li>Gaussian and non-Gaussian state space models for time series.</li><li>State space models for time series with exogenous predictors.</li><li><em>Hierarchical models for a potentially large set of time series.</em></li><li>Dynamic modelling of stochastic volatility and spatio-temporal dependence.</li></ul>...2172960Dynamic Time Series Models using R-INLA13551355https://www.gandhi.com.mx/dynamic-time-series-models-using-r-inla/phttps://gandhi.vtexassets.com/arquivos/ids/2014292/2fd831c5-6b35-455d-9c3f-8745c6b2d537.jpg?v=638345214268000000InStockMXN99999DIEbook20229781000622874_W3siaWQiOiIzZGM0YzA3Mi0wOWZhLTRmZjItOWExOC1lN2Y1NWVkODdkMDIiLCJsaXN0UHJpY2UiOjEzNTUsImRpc2NvdW50IjowLCJzZWxsaW5nUHJpY2UiOjEzNTUsImluY2x1ZGVzVGF4Ijp0cnVlLCJwcmljZVR5cGUiOiJXaG9sZXNhbGUiLCJjdXJyZW5jeSI6Ik1YTiIsImZyb20iOiIyMDI1LTA4LTI2VDExOjAwOjAwWiIsInRvIjoiMjAyNS0wOS0zMFQyMzo1OTo1OVoiLCJyZWdpb24iOiJNWCIsImlzUHJlb3JkZXIiOmZhbHNlfSx7ImlkIjoiYWUxNmYxODgtNGM4Yi00NTFkLWEzNWUtYWNhNzAxY2M0MDQ0IiwibGlzdFByaWNlIjoxMzA2LCJkaXNjb3VudCI6MCwic2VsbGluZ1ByaWNlIjoxMzA2LCJpbmNsdWRlc1RheCI6dHJ1ZSwicHJpY2VUeXBlIjoiV2hvbGVzYWxlIiwiY3VycmVuY3kiOiJNWE4iLCJmcm9tIjoiMjAyNS0xMC0wMVQwMDowMDowMFoiLCJyZWdpb24iOiJNWCIsImlzUHJlb3JkZXIiOmZhbHNlfV0=9781000622874_<p><em><strong>Dynamic Time Series Models using R-INLA: An Applied Perspective</strong></em> is the outcome of a joint effort to systematically describe the use of R-INLA for analysing time series and showcasing the code and description by several examples. This book introduces the underpinnings of R-INLA and the tools needed for modelling different types of time series using an approximate Bayesian framework.</p><p>The book is an ideal reference for statisticians and scientists who work with time series data. It provides an excellent resource for teaching a course on Bayesian analysis using state space models for time series.</p><p>Key Features:</p><ul><li>Introduction and overview of R-INLA for time series analysis.</li><li>Gaussian and non-Gaussian state space models for time series.</li><li>State space models for time series with exogenous predictors.</li><li><em>Hierarchical models for a potentially large set of time series.</em></li><li>Dynamic modelling of stochastic volatility and spatio-temporal dependence.</li></ul>...9781000622874_CRC Presslibro_electonico_2accb869-2da3-3c72-9fe0-80b6ea863d1c_9781000622874;9781000622874_9781000622874Refik SoyerInglésMéxicohttps://getbook.kobo.com/koboid-prod-public/taylorandfrancis-epub-3c3aa927-0687-455f-9252-7a5439624523.epub2022-08-10T00:00:00+00:00CRC Press